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Abstract. The parallel dynamics of the asymmetric extremely diluted Ashkin-Teller neural network is
studied using signal-to-noise analysis techniques. Evolution equations for the order parameters are derived,
both at zero and finite temperature. The retrieval properties of the network are discussed in terms of the
four-spin coupling strength and the temperature. It is shown that the presence of a four-spin coupling
enhances the retrieval quality.
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1 Introduction

Recently, the equilibrium properties of the Ashkin-Teller
neural network (atnn) have been studied in [1,2]. The
neurons of the atnn are described by two Ising spins
of different types. This allows the network to store and
to retrieve pairs of patterns. Therefore, more compli-
cated information can be stored in the atnn than in the
Hopfield model [3,4], e.g., the fore- and background of a
picture. Every spin is connected to spins of the same type.
In addition, the neurons are connected to each other. The
connections linking the neurons are four-spin couplings,
since they connect two pairs of spins, one pair per neu-
ron. This allows the network to retrieve both patterns of
a pair simultaneously. One can think of the model as a
combination of two Hopfield models, each retrieving one
of the patterns. The four-spin coupling is then a connec-
tion between both models. The underlying idea is that the
simultaneous retrieval of a pair of patterns is easier than
the independent retrieval of the patterns in the pair.

There are various reasons for studying this model. The
Ashkin-Teller spin glass is related to disordered systems
where the disorder evolves on a time scale that can be
tuned [5]. The introduction of a neuron containing dif-
ferent types of spins is also neurobiologicaly motivated
by the fact that areas in the brain exist which react to
two different kinds of dependent stimuli in such a way
that the response to particular combinations of these stim-
uli is stronger than the response to others [6]. Finally, in
neuropsychological studies on amnesia, it has become ap-
preciated that memory is composed of multiple separate
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systems which can store different types of informations,
e.g., information based on skills and informations based
on specific facts or data [7].

In [1,2], the thermodynamic and retrieval properties
of the atnn have been studied using replica-symmetric
mean-field theory. In the present paper, we analyse the
parallel dynamics of the asymmetric extremely diluted
version of the model. Both the way how the system evolves
to its equilibrium configuration and the properties of the
equilibrium configuration itself are subjects of interest. It
is known [8,9] that the dynamics in symmetric architec-
tures, even in the diluted case, is complicated in a non-
trivial way because of correlations between the neuron
states. These correlations are caused by feedback loops
and common ancestors. In contrast to the Hopfield model,
where the dynamics has been solved taking into account
all the correlations [10–13], the presence of two types of
spins makes the analysis of the correlations in the atnn

very complicated. The underlying reason is the existence
of two sources of correlations. First, feedback loops ap-
pear due to the two-spin interaction, as in the Hopfield
model. Second, the four-spin coupling causes correlations
between spins of different type. Therefore, in order to ar-
rive at a first insight in the dynamics of the model, we
limit ourselves to its asymmetric extremely diluted ver-
sion where all correlations between the neuron states are
eliminated [14,15].

Using standard signal-to-noise analysis techniques
(see, e.g., Refs. [14,16]), we find that the local field of
the asymmetrically diluted atnn contains only a normally
distributed part, besides the signal. As observed already
for the asymmetric diluted Hopfield model [14], the struc-
ture of the local field does not change in time. This allows
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us to write down immediately the complete time evolution
of the main overlaps.

The rest of the paper is organised as follows. In the
second section, we define the model as an extension of
the Hopfield model. We introduce parallel dynamics at
arbitrary temperature, and define the main overlaps (one
for each type of spins) as macroscopic measures for the
retrieval quality. In Section 3, we use signal-to-noise anal-
ysis techniques in order to write down the evolution equa-
tions at arbitrary time. From the evolution equations, the
fixed-point equations are obtained. These equations lead
to the dynamical capacity-temperature diagram presented
in Section 4. Finally, we give some concluding remarks in
Section 5.

2 The model

The atnn is defined as a neural network consisting of N
neurons. Each of the neuron states is described by two
spins with value σi and si (i = 1, . . . , N), both taken
from the discrete set {−1,+1}. For each type, the spins i
and j are coupled by a two-spin interaction J (1)

ij and J(2)
ij

respectively, while the neurons i and j are coupled by a
four-spin interaction J

(3)
ij . We assume no diagonal terms

viz. J(y)
ii = 0, y = 1, 2, 3.

A configuration of an atnn consists out of a σ- and
s-part viz.

(σ(t) = {σj(t)}, s(t) = {sj(t)}) ; j = 1, . . . , N. (1)

Given such a configuration, we define three types of local
fields: two Hopfield-like local fields which measure the in-
coming signal to the spins σi and si, caused by the spins
of the same type

h
(1)
N,i(σ(t)) =

N∑
j=1

J
(1)
ij σj(t)

h
(2)
N,i(s(t)) =

N∑
j=1

J
(2)
ij sj(t), (2)

and, in addition, a local field which measures the incom-
ing signal to neuron i, caused by both spins of the other
neurons

h
(3)
N,i(σ(t), s(t)) =

N∑
j=1

J
(3)
ij σj(t)sj(t). (3)

In the sequel, we write the shorthand notation h
(x)
N,i(t) ≡

h
(x)
N,i(Sx(t)), x = 1, 2 with S1(t) = σ(t), S2(t) = s(t), and

h
(3)
N,i(t) ≡ h

(3)
N,i(σ(t), s(t)). The configuration (σ(0), s(0)) is

chosen as input. At temperature T = 1/β, all neurons are

updated in parallel according to the transition probability

Pr
(
σi(t+ 1) = σ

∣∣∣∣σ(t), s(t)
)

=

1
2

[
1 + tanhβσ

(
h

(1)
N,i(t) + si(t)h

(3)
N,i(t)

)]

Pr
(
si(t+ 1) = s

∣∣∣∣σ(t), s(t)
)

=

1
2

[
1 + tanhβs

(
h

(2)
N,i(t) + σi(t)h

(3)
N,i(t)

)]
. (4)

We assume hereby that both types of spins exhibit the
same degree of stochasticity. At zero temperature, this
dynamics becomes deterministic and is given by

Sx,i(t+ 1) = sign
(
h

(x)
N,i(t) + Sx̃,i(t)h

(3)
N,i(t)

)
(5)

with x, x̃ = 1, 2 and x 6= x̃. The σ-spins receive at each
time input from the s-spins and vice versa due to the term
containing h(3)

N,i(t).
The aim of the network is to store simultaneously p

patterns {ξµ}, µ = 1, . . . , p in the σ-part of the net-
work and p patterns {ηµ} in the s-part. All components
of the patterns ξµi and ηµi are independent identically dis-
tributed random variables (i.i.d.r.v.) taken from {−1,+1}
with zero mean 〈ξµi 〉 = 0 = 〈ηµi 〉 and independent type by
type

〈
ξµi η

ν
j

〉
= 0 (i, j = 1, . . . , N). In order to store these

embedded patterns, the two-spin couplings are chosen ac-
cording to the Hebb-rule

J
(1)
ij =

1
N

p∑
µ=1

ξµi ξ
µ
j J

(2)
ij =

1
N

p∑
µ=1

ηµi η
µ
j . (6)

The four-spin interaction is, also in analogy to the Hebb-
rule, defined as [1]

J
(3)
ij =

J

N

p∑
µ=1

γµi γ
µ
j γµk = ξµk η

µ
k . (7)

The patterns {γµ} are then also a set of i.i.d.r.v. taken
from {−1,+1} with zero mean. In the literature, this
choice of patterns is called the linked case [1].

The constant J measures the relative strength of the
four-spin couplings with respect to the two-spin couplings.
In the limit J → 0 the atnn becomes, at least in structure,
the equivalent of two independent Hopfield models since
h

(3)
N,i(t) = 0 at all times. We use the temperature T and

the relative coupling strength J as independent variables.
In the sequel, we take the interactions asymmetric ex-

tremely diluted [14,15]

J̃
(y)
ij = cijNJ

(y)
ij /c y = 1, 2, 3 (8)

with c > 0 and Pr{cij = a} = (1− c/N)δa,0 + (c/N)δa,1.
The variables {cij} are independent for each pair (i, j)
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representing both the asymmetry and the dilution. All the
couplings are thus diluted in the same way. The diagonal
terms are excluded cii = 0. The structure of the archi-
tecture of the network then becomes a directed tree with
an average number of incoming and outgoing connections
both equal to c. It is assumed that c� N . The system is
first diluted by taking the limit N →∞. Afterwards, the
number of incoming signals per site is made extensive by
taking the limit c→∞. The probability to have feedback
in the system is now zero and the correlations are tree-
like. In what follows, we write, for simplicity, J (y)

ij instead

of J̃(y)
ij .
At this point, we note that the capacity of the atnn is

defined as the ratio of the number of patterns stored in the
network and the number of couplings to a neuron. In this
model where we want to store 2p patterns {ξµ,γµ}, all
neurons have in average 3c links to the other neurons: 2c
two-spin couplings and c four-spin couplings. Therefore,
the capacity of the atnn equals

αATNN ≡
2p
3c

=
2
3
α. (9)

The retrieval quality of the model is measured by the
Hamming distance between the microscopic state of the
network and the stored patterns

Dµ
H(t) ≡

[∑
x

(dx(ψµx,Sx(t)))2

] 1
2

(10)

dx(ψµx ,Sx(t)) ≡ 1
N

N∑
i=1

[ψµx,i − Sx,i(t)]2 (11)

where µ = 1, . . . , p, x = 1, 2, ψµ1 = ξµ and ψµ2 = ηµ. This
naturally introduces the main overlaps

mµ
x,N(t) =

1
N

N∑
i=1

ψµx,iSx,i(t) µ = 1, . . . , p. (12)

In the diluted model the sum in (12) has to be taken over
the tree-like structure, viz. 1

N

∑N
i=1 → 1

c

∑N
i=1 cij . The

expression for the main overlap (12) then reads

mµ
x,c,N(t) =

1
c

N∑
i=1

cijψ
µ
x,iSx,i(t) µ = 1, . . . , p. (13)

We remark that both expressions (12, 13) become equal
in the thermodynamic limit c,N →∞.

3 Dynamics

In this section we construct a set of recursion equations for
the main overlap order parameters. We use hereby signal-
to-noise techniques [14] (see also [15,16]). Finally, we write
down the fixed-point equations.

Suppose an initial spin configuration (σ(0), s(0)). The
configurations Sx(0) = {Sx,i(0)}, i = 1, . . . , N are col-
lections of i.i.d.r.v. with mean 〈Sx,i(0)〉 = 0 and variance

〈
(Sx,i(0))2

〉
= 1. Spins of different types are uncorre-

lated 〈σi(0)sj(0)〉 = 0 (i, j = 1, . . . , N). Both types are
correlated with only one of the stored patterns, e.g., the
first one 〈

ψµx,iSx,j(0)
〉

= δi,jδµ,1m
1
x,0. (14)

The site by site independence of spins and patterns implies
by the law of large numbers (lln) that we get for the main
overlaps

m1
x(0) ≡ lim

c,N→∞
m1
x,c,N(0) =

〈
ψ1
x,iSx,i(0)

〉
= m1

x,0. (15)

We now want to study how the main overlaps evolve under
the parallel dynamics specified before. For a general time
step and at T = 0, we find from (13) and the lln in the
limit c,N →∞

m1
x(t+ 1) =

〈〈
ψ1
x,isign

(
h

(x)
i (t) + Sx̃,i(t)h

(3)
i (t)

)〉〉
m1

3(t+ 1) =
〈〈
ξ1
i η

1
i sign

(
h

(1)
i (t) + si(t)h

(3)
i (t)

)
×sign

(
h

(2)
i (t) + σi(t)h

(3)
i (t)

)〉〉
(16)

where x, x̃ = 1, 2; x 6= x̃. The average 〈〈·〉〉 denotes the av-
erage both over the distribution of the embedded patterns
{ξµi } and {ηµi } and the initial configuration {σi(0), si(0)}.
The average over the latter is hidden in an average over
the local fields through the updating rule (4).

The equations (16) show that the knowledge of the
distribution of the local field at successive time steps is
sufficient in order to find the evolution equations for the
order parameters. We start with calculating the distribu-
tion of the local field of the σ-spins at t = 0. Using the
definitions (6) and applying the signal-to-noise analysis,
we have

h
(1)
N,i(0) = ξ1

i

1
c

N∑
j=1

cijξ
1
jσj(0) +

1
c

p∑
µ=2

ξµi

N∑
j=1

cijξ
µ
j σj(0).

(17)

The signal term, i.e., the first term on the r.h.s. of (17),
is nothing but the main overlap (13) multiplied by ξ1

i . In
the noise part, i.e., the second term on the r.h.s., all terms
are uncorrelated by construction such that we can apply
the central limit theorem (clt) to find

lim
c,N→∞

1
√
p

p∑
µ=2

ξµi
1√
c

N∑
j=1

cijξ
µ
j σj(0) ∼ N (0, 1) (18)

whereN (0, 1) represents a Gaussian random variable with
mean 0 and variance 1. Therefore, in the limit c,N →∞,
the local field at t = 0 is the sum of two independent
random variables

h
(1)
i (0) ≡ lim

c,N→∞
h

(1)
N,i(0) = ξ1

im
1
1(0) +

√
α z1(0) (19)
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with z1(0) ∼ N (0, 1). In an analogous way, we find for the
local field of the s-spins

h
(2)
i (0) ≡ lim

c,N→∞
h

(2)
N,i(0) = η1

im
1
2(0) +

√
α z2(0) (20)

with z2(0) ∼ N (0, 1).
As in the local fields of the spins (2), we separate in

the local field (3) the terms containing the first pattern
γ1 from the rest

h
(3)
N,i(0) = γ1

i

1
c

N∑
j=1

cijγ
1
j σj(0)sj(0)

+
1
c

p∑
µ=2

γµi

N∑
j=1

cijγ
µ
j σj(0)sj(0). (21)

In analogy with before, we call the first term the signal
and the last term the noise. Applying the lln to the signal
term, we get

lim
c,N→∞

1
c

N∑
j=1

cijγ
1
j σj(0)sj(0) =

〈
γ1
j σj(0)sj(0)

〉
. (22)

Since this term resembles strongly the main overlaps (13),
we call it also an overlap and denote it by m1

3(0). In gen-
eral, this overlap is defined by

mµ
3,c,N(t) =

1
c

N∑
i=1

cijγ
µ
i σi(t)si(t) µ = 1, . . . , p. (23)

In the sequel, we will treat this parameter at the same
level as the other overlaps (13). For the linked choice of
patterns (7) it follows from (14) that 〈γµi σj(0)sk(0)〉 =
δijδikδµ1m

1
1,0m

1
2,0 since the initial spin configurations

σj(0) and sj(0) are independent. Therefore, we have in
the thermodynamic limit and at t = 0

m1
3(0) ≡ lim

c,N→∞
m1

3,c,N(0) = m1
1(0)m1

2(0). (24)

Following the same line of arguments as before, the noise
term converges again to a Gaussian random variable such
that

h
(3)
i (0) ≡ lim

c,N→∞
h

(3)
N,i(0) = Jξ1

i η
1
im

1
3(0) + J

√
α z3(0)

(25)

with z3(0) ∼ N (0, 1). This finishes the calculation of the
local fields at time t = 0.

At a general time t, the local fields still consist out of
a signal term, proportional to the main overlap, and a
Gaussian distributed noise part. This is due to the
extreme dilution which eliminates all common ances-
tors in the dynamics. Therefore, all variables {Xµ

j ≡
ψµx,icijψ

µ
x,jSx,j(t)|j = 1, . . . , N ; µ = 1, . . . , p} form a set

of i.i.d.r.v. and we can apply the clt in the same way as
in equation (17). So, we find for the distribution of the

local fields a set of equations with the same structure as
the equations (19, 20, 25), viz.

h
(x)
i (t) = ψ1

x,im
1
x(t) +

√
α zx(t); zx(t) ∼ N (0, 1)

h
(3)
i (t) = Jξ1

i η
1
im

1
3(t) + J

√
α z3(t); z3(t) ∼ N (0, 1).

(26)

The three Gaussian variables zy(t) are uncorrelated.
Using the distributions of the local fields (26) and re-

marking that the joint probability of si(t), σi(t), ξ1
i and

η1
i is obtained from the overlaps m1

y(t), y = 1, 2, 3, the
equations (16, 26) lead immediately to the evolution equa-
tions for the order parameters at zero temperature (we
forget about the superscript 1 in the sequel)

mx(t+ 1) =
∑
σ=±1

1
2

(1 + σmx̃(t)) Erf

(
mx(t) + σJm3(t)√

2α(1 + J2)

)
m3(t+ 1) =

∑
σ,τ=±1

(στ + σm1(t) + τm2(t) +m3(t))

×
∫
Dz Erf

(
σm1(t) + Jm3(t) + J

√
αz√

2α

)
× Erf

(
τm2(t) + Jm3(t) + J

√
αz√

2α

)
(27)

where x, x̃ = 1, 2, x 6= x̃.
After some time t the dynamics reaches the point

where the spins macroscopically equilibrate. This means
that the main overlaps become stationary, viz. my(t +
1) = my(t). Since the expressions for the local fields do
not change their structure, the corresponding fixed-point
equations are easily obtained from equation (27) by re-
placing the time dependent quantities by their equilib-
rium value my ≡ limt→∞my(t). In the limit J → 0, the
equations (27) are consistent with the evolution equations
of [14].

At non-zero temperature T = 1/β the main overlaps
at time t read

mx(t+ 1) =
〈〈
ψx,i 〈Sx,i(t+ 1)〉β

〉〉
m3(t+ 1) =

〈〈
ξiηi 〈σi(t+ 1)〉β 〈si(t+ 1)〉β

〉〉
. (28)

The thermal averages are defined by the updating rule (4)
and can be written as

〈Sx,i(t+ 1)〉β = tanh
[
β
(
h

(x)
i (t) + Sx̃,i(t)h

(3)
i (t)

)]
.

(29)

The stochasticity in the dynamics does not modify the lo-
cal spin correlations when compared with the determinis-
tic dynamics. Therefore,the local fields are still distributed
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according to (26) and we get for the order parameters

mx(t+ 1) =
∑
σ=±1

1
2

(1 + σmx̃(t))

×
∫
Dy tanhβ

(
mx(t) + σJm3(t) +

√
α(1 + J2)y

)

m3(t+ 1) =
∑

σ,τ=±1

1
4

(στ + σm1(t) + τm2(t) +m3(t))

×
∫
Dz
∫
Dx tanh β

(
σm1(t) + Jm3(t) +

√
αx+ J

√
αz
)

×
∫
Dy tanhβ

(
τm2(t) + Jm3(t) +

√
αy + J

√
αz
)
.

(30)

The fixed-point equations are read off from (30) by us-
ing again my = limt→∞my(t), y = 1, 2, 3. In the zero-
temperature limit β → ∞, the equations above reduce
to (27). Moreover, in the limit J → 0, they are consis-
tent with the ones obtained for the asymmetric extremely
diluted Hopfield model in [14].

4 Results

In this section, we discuss the numerical results for the
atnn obtained from the fixed-point equations derived in
the previous section. We present the capacity-temperature
diagram indicating the regions of retrieval as a function
of the capacity αATNN and the temperature T , and some
representative figures illustrating the main features of the
model.

Due to the choice of equal two-spin coupling strengths
and the condition that both types of spins have a fi-
nite initial overlap with one condensed pattern, it turns
out that the overlaps m1(t) and m2(t) always converge
to the same equilibrium values, independent of the size
of the initial overlaps. Therefore we can restrict ourselves
to the case m1 = m2.

The resulting capacity-temperature diagram is presen-
ted in Figure 1. First, we consider the special case J = 0.
At T = 0 a non-zero solution for the fixed-point equations
exists as long as α < 2/π, indicating a transition from the
retrieval to the non-retrieval regime at αATNN = 4/3π.
When the temperature increases, the critical capacity de-
creases to become zero at T = 1. The resulting transi-
tion line in the capacity-temperature diagram is similar
to the one of the Hopfield model [14] up to a rescaling
of the capacity. This is not surprising since the structure
of the equations of the atnn for J = 0 is consistent with
those of the Hopfield model. The transition is always con-
tinuous, and the main overlap decreases when αATNN in-
creases. This indicates that the more embedded patterns,
the harder the retrieval and the worse the retrieval quality.

When the four-spin coupling is non-zero, things be-
come different. A larger four-spin coupling makes retrieval

0.0 0.2 0.4

αATNN

0.0

0.5

1.0

1.5

T

J=0.0
J=0.3
J=1.0
J=2.0
J=3.0

Fig. 1. Capacity-temperature diagram for the atnn for J =
0.0 (full line), J = 0.3 (dotted line), J = 1.0 (dashed line),
J = 2.0 (long dashed line) and J = 3.0 (dot-dashed line).

possible at higher temperature and decreases the critical
capacity at low temperature.

For finite loading (αATNN = 0), a continuous transition
occurs for J ≤ 1/3 at T = 1. For larger J , the transition
becomes discontinuous and the critical temperature be-
comes larger. This indicates that a model with non-zero
four-spin couplings can perform better in the presence of
noise in the dynamics. This corresponds with the results
in [1]. The overlapm1 at the critical temperature increases
up to J = 2, meaning that the larger J the better the re-
trieval quality. From J = 2 onwards, the increasing noise
in the dynamics at the transition line results in a slowly
decreasing overlap m1. We note that we always observe
m3 = (m1)2 when αATNN = 0.

At zero temperature (T = 0), increasing J implies de-
creasing the critical capacity. The transition is always first
order, except for J = 0. The main overlap m1 at the tran-
sition line first increases with J , but starts to decrease
from J = 2.0 onwards. At larger J , it starts increasing
again. The overlap m3, however, always increases and be-
comes larger than m1 for J ≥ 4.2. The critical capacity
for J = 1 is equal to 0.3131, which is higher than that of
the fully connected atnn (αc = 0.1839) [2]. This is con-
sistent with the results obtained by comparing the asym-
metric extremely diluted with the fully connected Hopfield
model [4,14].

For non-zero temperatures and infinite loading, the
transition is partially continuous as long as J ∈ [0, 1/3].
The larger J , the larger the temperature is where a contin-
uous transition occurs. As an example, we have drawn the
value of the overlaps at the critical capacity for J = 0.3
(Fig. 2a) where the transition is continuous for T ≥ 0.88.
When J ≥ 1/3, the transition is discontinuous for all tem-
perature. In Figures 2b, 2c, we have drawn the overlaps
at the critical capacity for J = 1 and J = 3. The over-
lap m1 exhibits a maximum at T = 0.32 and T = 0.86
respectively while m3 is always decreasing.
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T

0.0

0.2

0.4

0.6

0.8

m
1,

m
3

0.0 1.0 2.0
T

0.0

0.2

0.4

0.6

0.8

m
1,

m
3

0.0 0.5 1.0
T

0.0
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Fig. 2. Overlaps m1 (full line) and m3 (broken line) at the critical capacity as a function of the temperature, for a) J = 0.3,
b) J = 1.0 and c) J = 3.0.

5 Concluding remarks

In this article, we have studied the parallel dynamics
of the asymmetric extremely diluted atnn with linked
patterns at arbitrary temperature. Because of the absence
of correlations between the neurons, we have found that
the noise of the local field at all time steps is normally
distributed. Hence, the dynamical equations for the
order parameters are obtained immediately. Furthermore,
the dynamical capacity-temperature diagram is discussed.

In the presence of the four-coupling term, the dynam-
ics can exhibit more noise without disturbing the retrieval
process completely. Moreover, the transition from the re-
trieval to the non-retrieval regime becomes first order.
This implies that the Hamming distance becomes smaller,
even at the transition line. So in general, we can say that
the four-coupling term enhances the retrieval quality of
the network.
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structive discussions. One of us (D.B.) thanks the Fund for
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15. D. Bollé, G.M. Shim, B. Vinck, V.A. Zagrebnov, J. Stat.
Phys. 74, 565 (1994).

16. A.E. Patrick, V.A. Zagrebnov, J. Phys. A 24, 3413 (1991);
J. Stat. Phys. 63, 59 (1991).


